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On the Efficient Implementation of SDA for A. Spectral-Domain Formulation
Boxed Strip-like and Slot-like Structures We start from the linear relationships between fields and currents
. . . at the metallized interface (th#/th one in [11, Fig. 1]):
Gabriel Cano, Francisco Medina, and Manuel Horno 1) Slot-Like Structures:
) . i I.(z)= . J.(2')y da’
Abstract—This paper reports on an enhanced implementation of e
the spectral-domain analysis (SDA) of boxed multistrip or multislot dE. ()
transmission lines embedded in a layered medium, including biaxial El(x)=— (2)
materials. Very high numerical efficiency is attained by a suitable basis da -
and mixed SDA and spatial-domain technique to calculate the entries . i L. ~
of the Galerkin matrix. Convergence properties of SDA are drastically {.lv(n) . vo ) n Ef(n) )
improved, making it competitive with other analytical techniques [such RN F () | T | Lo L.. [|E.(n) |
as regular singular integral equation (RSIE)]. The method allows quick J— T
and accurate computation of current/field distributions. o An A
. . ) 2) Strip-Like Structures:
Index Terms—Analytical methods, planar lines, spectral-domain anal- .
ysis. V,(x) = E.(2') dz'
I. INTRODUCTION T (x) = d'];(‘r) ©)
xr
Spectral-domain analysis (SDA) is considered the standard tech- . G..
nigue to perform the analysis of planar lines [1], but it is still computa- E.(n) ) Te2 ) J.(n)
tionally intensive for computer-aided design (CAD) purposes. Some Veln) | ~77H G, Gaw | | T (0) (4)
authors advocate for the use of mamealytical methods, such as J o o2

regular singluar integral equation ([RISIE) [2], [3]. They claim tha\t/vhere.]a (EF.) are thea-components of the surface current density

(R)SIE is superior to SDA because of a better series converge &fectric field) at theMth interface. The upper symboktands for

and smaller ord_er of characteristic matncz_es. quever, SDA matrlc % Fourier transforrrGw,,g and L., » are computed in closed form

are very small if the proper edge behavior is incorporated into the™ . S .

basis functions. In such a case, these functions have a wide s ecttr)% using the method in [11]. They are functionsigf.v, 5, and the
) ! P gimetrical parameters of the layered configuration.

responsible for poor convergence of spectral series (boxed structur% quations (2) and (4) have the forfﬁ(n) _ [F(n_w 7)]5((”)
or.integrals (open structures),.especially when high spat.ial resolutiorﬁere X is a sourcevector and¥ () is its correép(,)ndingield
(high-order modes, small strips or slots, etc.) is required [4]-[6, tor. When this relationship is written in the space domain and

Several methods have been applied to particular structures [7}-[ boundary conditions imposed by the strips or slots are enforced

SO as to improve the convergence. On the other hand, as statewlen get an integral equation for theource vector. Its spectral-

[3], some conclusions about the efficiency of (R)SIE reported omain kernel is given byF(n: w, v)]. All the components of the

Previous papers were rather optimistic when qpplled 1o _the analys'rﬁ(nown sourcevector in (2) and (4) have the same mathematical
of high-order modes or to the accurate description of fields and/or, _ . . . .

: : . bePawor. Therefore, we can use a unique set of basis functions to
currents. In this paper, we propose an enhanced implementation

- ' ) . . roximate any of the unknown quantities. This provides an elegant
SDA overcoming some of its numerical drawbacks. It is swtabf%g.p. Y . guar P eleg
unified treatment for strip- and slot-like geometries, and facilitates

for generalized planar structures (strip- and slot-like) embeddedthn . . . I

layered iso/anisotropic dielectrics. The key point of the technique 5 analytical preprocessing to be described later. In addition, all the
i ) N 1€ Bitries of [F'(n,w,v)] have similar asymptotic behavior for large

to split the dependence of the spectral series into factors depenqu/gnjes of

the unknown propagation constanand the frequency and factors "

involving the spectral variable sums. Quasi-analytical expressions )

are provided for these sums. The final result is a very fast cot%, Galerkin Method

which makes SDA at least as efficient and accurate as (R)SIE, whileThe Galerkin method is used to solve our integral equations. Thus,

retaining its high simplicity. the sourcevector is expanded into a set of basis functions in such

a way that the expansion coefficients = x are the solutions of

a homogeneous system of linear equati¢pdsw,v)]lz = 0. The

) _solvability condition gives the implicit dispersion equation
The structures under study are boxed planar strip- or slot-like

configurations [11, Fig. 1]. Our aim is to compute, as efficiently as det[A(w,7)] = 0. (5)
possible, they's of the supported modes.

Il. STATEMENT OF THE PROBLEM

For each particular value of, there exist nontrivial solutions for an
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has the form of a numerical series involving the Fourier transform ofatrices are written in terms of hyperbolic functions of a certain
the basis functiong;;”(n) and the spectral elements of the Green'sransverse propagation matrixin turn, there are three important

dyad F, . (n,w,~) transverse wavenumbers in that formulation: the eigenvalues of the
o » transverse propagation matriX'.; and I'=;) and T'y; [11] (these
A G = Zrlg;gp(n)FH,,(n’w,/»,/)[wi’q(n)]* (6) wavenumbers are identical for isotropic materials, but they differ

for anisotropic dielectrics). Lef’;(n) be any of the transverse
wavenumbers associated to tith layer. This generic wavenumber

wherei () stands for the (j)th strip or slot,p (¢) for the order
can be expanded as

of the basis function, ang (v) for the z- or z-components. A

well-establishedchatural set of basis functions is [9
[l Ti(n) =ar1ayp —1—(1,,1614;1 —i—a,;;a:;S + .- (10)

X — Ty
Vi (x) = i < wi/2 ) (7y Inorder to build up[F"?(n)], we truncate (10) as follows:

KP2(w.) K

Di(n) = T{%(n) = K, + 5. o

11

wherew; is the strip (slot) width and:.; the position of its center.

SinceF, . (n > 1)~ K, ,/n (K, being a constant), the generalwhere k; and K/ (w,~) are defined in Appendix B. Some previous
term of (6) diminishes as 2 (very slow rate of convergence) for asymptotic extraction methods would retain only the first term at
the basis functions in (7). Although good results can be obtained five right-hand side in (11). It is easily proven that the integer

~ for the first few modes using a reasonable number of Fourier termisove which|L';(n) — I'/?(n)| < &; Vn > ng (6 is arbitrarily small),
(IV), this number becomes too large whenever fine spatial resolutingreases witho asw?/? for our approximation and as? for the

is needed. This is a serious drawback for this simple and elegapnventional one. Therefore, the advantages of our approach will be
method. It is then advisable to us&l hocaccelerating techniques more evident when increases. Nevertheless, we only retain the first
(e.g., [7]-[10]). In this paper, we propose a unified and systemat&m in (11) whenl';(n) appears as the argument of a hyperbolic
treatment to accelerate computations for very general planar lines &maction, i.e.,

investigate the consequences of its use. The technique is based on the

extraction from the original series of auxiliary series in such a way coth[[i(n)h;] = coth(I;a,h;) (12)
that the difference series converge very fast as follows: cosech[D;(n)h;] & cosech(Kja, ;). (13)

A Go = > P () [Fu = FRENG01 )] + StomG.ay (8 This must be done so as to separate the dependente, o), such
n as in (9). Fortunately, the relative error of this approximation of the
with F”, being an approximate version df, ,. The following hyperbolic function is much smaller than the error of the argument
requisites are demanded frof*” (n)]. itself. The standard large argument approximation for (12) and (13)
%ﬁgl and O, respectively. This is not a completely convenient choice
cause the thickness of the dielectric layers is often very small in
comparison with the width of the enclosure. Our proposal (12), (13)
&s advantageous in any case, but especially when the slab-thickness-

1) The convergence of the residual series in (8) must be extrem
good. Thereforef“jj’f,, should matchF, , even for low values
of n (asymptotic matching must also be enforced).

2) FZ’,’V has to be known in closed form (even for complicate

. . it : to-enclosure-width ratio is small.
layered structures including biaxial dielectrics). ) ; L .
3) The computation of/"”, . . must be carried out in closed or By applying (11)—(13) in the definitions d§(n)]; ; in [11], and
quasi-closed form (.p)(,0) following the algorithm reported in that paper to compén)] [a
i matrix whose elements ate. z(n)], we get an approximate version

4) The effort devoted to the evaluation &f;" should be -

i,p)(5,9) ap . .
done just once (this is probably the most ipm;])grtant conditiony’ *(n)] of that dyad as follows:

The conditions above are fulfilled by writing the elementsSF = ap Sap 1
as the sum of products of functions depending, separately, and [I’ ("’)] = [LA (")] + 202
(w,7) as follows:
Pap (N p(D AT 2) ¢, N2 For strip-like structures, we need an approximation [iGn)] [a
Fuly(miw.3) = fuw o () + fiip (@ )by () (9) matrix whose entries aré., ;(n)] with the same feature[s ;s i]n (14).
in such a way thaf", . (n > ng,w,v) = Fg{;(n, w,v). The integer This is generated as
value no gives the upper summation limit for the residual series in

[Z;;;P (n)] . (14)

i ~a a N 1 =4 _1iza 4 _
(8), which have to be repegtedly computed. Therefoseshpulq be (G = (L ()] = 5 L ()] LY ()|[L2 (n)]
as small as possible (requirement #1). Note that the series involving On
hi!.> have to be computed just once for any valueyobr w (#4). (15)

,2)

The functional form ofi;;” will be obtained in Section IV for an o -

arbitrary layered structure (#2). Finally, a very efficient techniquinere the large argument approximation fdi’(n)] has been

to add up the series associated to the approximate Green’s dyaddSRd- Now using (1)—(4), we can write a unified expression for the
available (Section V and Appendix A) (#3). approximate version ofF(n)], [F"?(n)] as follows:

IV. THE APPROXIMATED SPECTRAL DYADS [FP(n;w,y)] =

.2
{2 o+ 3% wg e} as
In this section, we obtaifiF***]. Our starting point is the method !

for the computation of the spectral Green’s dyad (SGD) reportedivhere k, is the vacuum wavenumber.

[11]. The elements of the SGD are given there in terms of certain 2 The explicit expressions for the elements of the matride¥’]

2 spectral matricefgj(n)]:,;, which are known in closed form. Theseand [F'{’] are as follows.
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A. Case 1: Slot-Like Geometries 1e+1 oo
f=40 GHz (a/A,= 4.635)
: o 1e+0 -
P, =K |ét) = Tp(0)
zx kg 1e-1 T
Fif =F7 =7%m)
NN = le2 .
F =2(n) 17) =4
o 4 @) 1 .
~ / P 4 e-3
Py :22—2-1-72(171 — 4by + bs) + kZbs =
0 B &N 1e-4 7
L i 77(21)2 — by — 2%) )
: kg 1e-5 ~
2 AN
Sa Y
Py, ==275 —ba (18) 1e-6 _
0
N . 1e-7 5 -
B. Case 2: Strip-Like Geometries € \\
1e-8 :

N 2 1
P o=
= kgen)  @(n) . . . - .

_ _ , Fig. 1. Dependence on the Fourier variable) of |G .. (n)| (dotted line)
FAP;I = FA,f;Z =J3z andAG.. = G..(n) — G (dashed line: first-order approximation, solid

' line: second-order approximation) for two different frequency values (4 and
(19) 40 GHz) for a single isotropic substrate in a b@x = 11.7). Dimensions:

h =317mm,w = 3.04 mm, ¢ = 34.74 mm, d = 50 mm.

2

Fap
FAM -

~ 2 2 2
F%p;;:< ! <2b26—b,1—6__?_b1 —/lbg

2
P =P8 = I e <€b2 i f‘é“)

with t = 1 andt = 3. The parameterd; ; and ¢; ; depend on
the strip (slot) widths and their relative locations inside the box.
The Bessel functions,,, multiplied by trigonometric functions in

(20) corresponds to the quasi-static limit of the problem, and quasi-
analytical expressions have been already provided for this case [12],
wheree = é(n — o). The algorithm to computé(n) and &(n), as [13]. The series corresponding to= 3 are related to the full-wave
well as the values of andb; (i = 1,2,3,4), are given in Appendix hature of the problem, and they become more and more significant
B. whenw increases. Although we cannot trace for these series a parallel
Expression (16), in conjunction with (17)—(20), has the forrMith a quasi-static problem, we can adapt the mathematical procedure
required in (9). Note that the dependence en of [F%?] and underlying one of the methods reported in [12] and [13] to add up
[F4?] is quite different: we can consider those terms as first- af§ich series very efficiently (see Appendix A).
second-order approximations to the exact SGD. The details of the
stratified dielectric are explicitly incorporated in the first-order term VI. NUMERICAL RESULTS AND DiscussioN
in (16) throughé(n) and ®(n). The second-order term in (16) |, this section, we will check the numerical performance of the
presents a simpler dependence orend incorporates information yo.hnigues described in the previous sections. In particular, we are
gbout the layers adjacer.n to thg metallized surface. This term becorasmg to study the following three aspects.
important when the ratia/\o is not small (high frequency). The
approximation could be improved while keeping the essential featurxs
of our approach by using a more sophisticated expressiof¥fgf]. '
However, this would partially destroy the simplicity of our approach Exact SGD should be compared against its approximations (16). As
by introducing cumbersome computations, whereas benefits would@eexample, let us consider the curves in Fig. 1, which correspond to a
significant only for very special structures. simple boxed microstrip. The magnitude of the chosen element of the
Green’s dyad—all the elements behave in a similar way—decreases
asn™' for largen (independently ofs), while the difference between

such an element and their first- and second-order approximations

OnceF, is available, direct summation of the numerical series §hnishes as—> andn—>. Therefore. the original series decaying as
the right-hand side in (8) is feasible because of their fast convergengez (hoor convergence) are substituted by series decaying asr

However, the series defining/;",  , in (8) converge very slowly ,,—6 (excellent convergence). This behavior is the same for complex

and their convergence properties are very sensitive to physiglered structures and for both strip- and slot-like problems. It is clear
dimensions. Even though they have to be computed just once, {g; extracting out the first-order approximation is almost mandatory
computational effort might be prohibitive. It is then necessary @, keep the numerical effort within reasonable margins. The second-
develop a fast method to compui/, ;. Taking into account the rder approximation represents an additional improvement of a factor
asymptotic limit values of(n) and ®(n) (see Appendix B), there ranging from 5 to 10 (depending on geometry and frequency).
are two type of numerical series relevant to this task: Applying asymptotic extraction schemes is particularly important if
< cos(nes) | [cos(ney) we are interested in very high-order modes or narrow strips/slots. It
Si = Z 7Jp(nd,;)Jq(ndj){Sin(ncf) }{Sin(wf) } (21) is also very important to realize that the singularity of the functions
" T T in (7) is eliminated if the series are prematurely truncated (thus,

} 1\2 2 (21) come from the Fourier transforms of (7). The case= 1
an“ :<} E) <b4+ ! b])
©0

Performance of the First- and Second-Order Approximations

V. THE AsYMPTOTIC TAILS

n=1
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TABLE |
CONVERGENCE WITH THE NUMBER OF FOURIER TERMS OF THE NORMALIZED PROPAGATION CONSTANTS OF THEFUNDAMENTAL 7-MODE
AND A CoMPLEX MODE OF SUSPENDED BoXxeD CouPLED MICROSTRIPS(SEE [5] AND [6]). @ = 2.54 m, h; = ho = 0.254 mm,
hs = 0.762 mm, so = 0.0127 mm, S : Wy : S : Wo : S5 = 89.5: 20 : 1 : 40 : 49.5,

Erl = Ep3 = 1, &p9 = 2.2, f = 150 GHz
N v/ko (second order) v/ko (first order)
m-mode complex mode m-mode complex mode

5 1.2610062 0.0189734 - j 1.5435071 1.2593177 0.0180650 - j 1.5469802
10 1.2609137 0.0190072 - j 1.5429143 1.2604623 0.0190182 - j 1.5431034
20 1.2609104 0.0190037 - j 1.5429045 1.2608074 0.0190005 - j 1.5429410
30 | 1.2609103 | 0.0190037 - j 1.5429041 | 1.2608630 0.0190036 - j 1.5429176

70 — — 1.2609048 0.0190036 - j 1.5429057
120 — — 1.2609093 0.0190036 - j 1.5429044
250 — — 1.2609103 | 0.0190037 - j 1.5429041
N ~/ko (direct sum)

fundamental complex mode S,
10 — —_ S, Wil [ W | S h3

102 | 1.2632773 0.0185158 - j 1.5375064 e -

10° | 1.2609331 | 0.0190319 - j 1.5428293 h,

10* | 1.2609126 0.0190063 - ; 1.5428966 *h
10° | 1.2609105 0.0190038 - ; 1.5429043 !

converged valug=.; = 8.8100416) is consistent with the one
reported in [8, Table 1] (three digits).
In [5] and [6], Tzuang and Kuo presented SDA data for tightly cou-

1e+0

1e-1 A o . . .
€ AAA pled strips in a metallic box, which were computed using thousands of
F AAA spectral terms. A few terms are enough for our method to get superior
Te-2 B accuracy. Thus, Table | reports results for the reahode and the
AL complex mode analyzed in [5] and [6]. Our data systematically
& i f=4GHz AN . - )
S 1ed | A and consistently converge to their final values (boldface characters;
- i €.y = 8.8100416 ] eight figures are correct) wheN increases without oscillations (no
w0’ 1o [ A€, =€,y (N) - €l ] numerical instabilities). Convergence rates are dramatically different
< for direct summation, first-, and second-order approximations. Our
L b results are very close—although not identical—to the ones in [5] and
1e5 | u . 6l. Th Iso found in the analysis of
3 ] 3 [6]. These convergence patterns are also found in the analysis o
5 mg) 1 multiple conductors or slots embedded in complex stratified regions
1e6 & o - since the method was designed to account for all those circumstances.
3 %tl 3 The impact of using the technique in this paper is now clear.
e7 b oL . MRS « B
1 10 100

C. Convergence of the Current/Field Expansion

N
Obtaining accurate field/current distributions is more difficult than
Fig. 2. Relative error of the effective dielectric constant of a boxed mbomputing good values fory. Our method is also suitable for
crostrip as a function of the number of Fourier terf®’) retained in tina th titi Returning to th bl vzed i
series evaluationsA: brute-force summatiorid: first-order approximation, computing those quantiues. keturning 1o the pro _em.ana yzed In
®: second-order approximation. Physical parameters as in Fig. 1. [5] and [6], we concentrate on the current distribution for the
fundamentalr-mode. We have systematically increased the number
of basis functions for the surface current on the strips and studied the

eﬁpansion coefficients. No more than 50 Fourier terms are required

losing th? nice mathematical features_ of ‘h?“ _ba3|s). The US€ 8 get six or seven correct figures for those (see Table Il). We
asymptotic schemes ensures that the singularity is actually taken Bl erved that adding a new basis function to the expansion only

account since I.t Is strongly related t_o_ the large argument Im_m elds slight variations of the coefficients affecting the other basis
the spectral series. We have also verified the usefulness of usmgﬁJ Ctions. This is a consequence of the quasi-orthogonal nature of

approximations in (12) and_(13) ins_tead of the_ir limit value_s of ONfe functions in (7) for the kernel of our problem. This feature
and zero: when the layer thickness is small, this approach 'mmdu?ﬁl‘?ﬂmizes the number of functions necessary to get a given accuracy.

an important improvement. However, taking advantage of this property depends on the accuracy
of the evaluation of the Galerkin matrix entries: only the use of
asymptotic extraction techniques ensures its proper exploitation, as
This section illustrates the impact of using our method in thgreviously stated. It has also been verified that for low-order modes,
computation ofy. Let us consider the microstrip of Fig. 1. Thethe expansion coefficients become smaller and smaller when the order
curves in Fig. 2 show the error of the fundamental-mode effectivd the affected basis function increases: on a graphical representation
dielectric constant as a function &f (eight figures are correct for of the current distribution, the impact of high-order basis functions is
large N): asymptotic extraction yields extreme accuracy with femot appreciable, so making the shape of the distribution smooth. In
Fourier terms. Second-order approximation is superior to the firsntrast, a nonphysical oscillatory behavior of the computed current
order one, and both are much better than direct summation. Tdensity has been reported in [5]. This is attributed to the nature of

B. Convergence of the Propagation Constants
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TABLE 1l the context of the quasi-TEM analysis of this type of lines. The
EXPANSION COEFFICIENTS FOR.J. ON STRIP #1 OF THE STRUCTURE IN formulation has been presented in an unified way for slot- and strip-
TasLE | (7-MODE). WE HAvE UsED 11 Basis FUNCTIONS FOR like configurations and it is useful for both propagation constant and

J. AND TEN FOR J; AT EACH STRIP AND

SECOND-ORDER APPROXIMATION field/current computations. The method makes SDA competitive with

more analytical techniques.

N=0 N=5 N=15 N=30 N=50
zo | 1.0000000 | 1.0000000 | 1.00060000 | 1.00000600 | 1.0000000
zy | 0.7395056 | 0.7187769 | 0.7193314 | 0.7193278 | 0.7193276 APPENDIX A
zz | 0.3681362 | 0.3570832 | 0.3573834 | 0.3573817 | 0.3573816 A fast method to compute the numerical series in (21) is given
z3 | 0.1980832 | 0.1918661 | 0.1919604 | 0.1919658 | 0.1919657 here. Thet = 1 case in (21) is not considered because it corresponds

z4 | 0.1109432 | 0.1080119 | 0.1080574 | 0.1080592 | 0.1080596
zs | 0.0641157 | 0.0625085 | 0.0625400 | 0.0625386 | 0.0625391
ze | 0.0377435 | 0.0368229 | 0.0368411 | 0.0368406 | 0.0368405
z7 | 0.0246870 | 0.0219299 | 0.0219408 | 0.0219409 | 0.0219407

to the quasi-static limit studied in [12] and [13]. The= 3 case
still requires further explanation. Expression (21) foe 3 actually
corresponds to the following series:

zg | 0.0134350 | 0.0131166 | 0.0131230 | 0.0131231 | 0.0131230 < . 1
zo | 0.0079645 | 0.0077774 | 0.0077812 | 0.0077812 | 0.0077812 Sy = Zv’»}j”(n)[vl‘i"’]*j (22)
Zy0 | 0.0045061 | 0.0044008 | 0.0044030 | 0.0044030 | 0.0044030 n=1 n
where bef’(n) are the Fourier transforms of (7). Parseval and
TABLE Il convolution theorems allow us to rewrite (22) as
ExpPANSION COEFFICIENTS FOR.J. ON STRIP #1 OF THE STRUCTURE ) )
IN TABLE | (m-MoDE). WE HAVE USED 11 Basis FUNCTIONS FOR _a D J IRNANE N
J- AND TEN FOR J, AT EACH STRIP AND DIRECT SUMMATION S3 = 2 /(LL vii () / da G, )y («) (23)
N=100 N=600 N=2000 | N=20000 where
zo | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000
zp | 1.5758647 | 0.7344069 | 0.7240906 | 0.7197715 , 2 = 1 sin(ap, ) sin(a, ')
Gs(z, v )= — Z — ’ (24)
z; | 1.7690514 | 0.3879443 | 0.3663594 | 0.3582137 a 28 \cos(anz) [ \cos(ane’)
z3 | 1.9751572 | 0.2186382 | 0.2003372 | 0.1927424 n=l
T4 | 2.6989454 | 0.1590808 | 0.1227672 | 0.1094226 where sine (cosine) is used for strip(slot)-like structures. Expres-

zs | 3.0496396 | 0.1009840 | 0.0745282 | 0.0636590

sion (24) can be written in terms of the functighN3(z) =
zg | 4.0618454 | 0.1096000 | 0.0576910 | 0.0387923

= | 41063823 | 0.0735405 | 0.0379886 | 0.0234815 ¥, cos(nz)/n3. Except for arguments close to 0 o, there
IT 4.8546689 0.1082511 0'0404979 0‘0157688 is no closed-form expression for this function, but for such a case
IZ 37514129 | 0.0731321 | 0.0282445 | 0.0099067 there exists an alternative strongly convergent series. In our codes,

210 | 3.6009984 | 0.1211710 | 0.0386809 | 0.0080266 the following formulas have been used:

. . . I A.  Small Argumentz < 0.1)
the functions in (7). However, since we do not detect oscillations, we

believe that numerical inaccuracy in the summation of the Fourier

series (even though thousands of Fourier terms were used) could he =~ 1.90205 157 22 I - 327
the cause of the problem. Tables Il and Il provide numerical suppdrt 5(2) = 1202056903157 + Z-In 2 — =
to this hypothesis. These tables contain the dependencé ohthe e -6
ey i . . - ... (25)
coefficients for the:-directed current expansion on the narrower strip 288 ~ 86.400

for the 7-mode of the structure in Table I. Table Il corresponds to the _ ) ) _
use of our method and Table Il to direct summation. Table Il shovidis expression can be obviously used whefs close to2 just
excellent convergence. Table Il shows the very poor convergenced@ngingz by 2 — z).

direct summation (X 10" Fourier terms and direct summation yield

results, which are much poorer than the ones obtained Witk 0 B. Other Casg0.1< z <27 — 0.1)

and second-order approximation). It is important to emphasize that
while the result forv/k; obtained withN' = 100 or 1000 (see ) )
Table 1) is reasonably good, the current expansion (see Taple III). is CN3(z) = Sy — %52 1 { z 1+ } 26)
completely erroneous. Therefore, a truncation of the Fourier series ™ 3

yielding a reasonably good propagation constant may be tota\I/I\X1

; . ! o . eresS;
inappropriate for current (or field) distribution computations. The

and S, are the following exponentially convergent series,

application of our technique completely overcomes this problem. This >, 1 — tanh(n)
has been checked with many other examples reported in the literature. 5= Z s cos(nz)
n=1
nmw |
VII. CONCLUSIONS = cosh [7 (m— :)]

Sy =

n=1

This paper presented a procedure to enhance the numerical be-
havior of the SDA of boxed planar structures. After identifying the
drawbacks of the straightforward implementation of SDA, a solutioDue to the regular character @¥;(x,z') and the type of singu-
has been proposed based on a technique to speed up spectral dariéies exhibited by (7) at the edges of the integration interval,
computation. This is based on the use of an appropriate approximat{@auss—Chebyshev quadratures are specially suitable to perform the
to the Green’s dyad, which permits one to reuse cumbersome partiauble integration in (23). A few quadrature points (no more than
computations. In addition, these partial computations have betve order of the highest order Chebyshev polynomial used in the
carried out in quasi-closed form by using results developed @xpansion) typically provide eight or even more exact figures.

n? sinh(nw2/2)
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APPENDIX B

In this appendix, we present the detailed expressions for a numbﬁr]
of constants and functions, which are necessary to implement our
method. Thus, we provided in (11) an approximation forithdayer  [2]
transverse wavenumberd—, T'-;, [',;,—relevant to the method
used in [11] to calculate the SGD of layered structures with biaxiab]
dielectrics. The parameter&’; and K; in (11) are distinct for
each transverse wavenumber, being their exact expressions: 1) for
Ty K; = 1, K] = (¥°/k§) — ei; 2) for Tt Ki = J2h,; (4]
K| = (v*/kd)et, —cb;and 3) forl'«;: K; = 1; K| = (v°/kg) — <1,
Whereef;y = 62/6; andeiy = c‘/s; [

Let us now write the detailed recurrent algorithm used to calculate
é(n) and ®(n) of (17) and (19). Assuming the printed interface is

the Mth one of alN-layers structure, we have (far< i < N) [6]

é(n) = 61\4+1fif{/,+1 (n) 4+ enr Ay (n) (27) 7]
with
. (8l
£+ ailAfti] (n) coth | an 1 /ci, i
AEm) = (28)
c; coth |:a:n ehyhi| it fiziil(n) (]
wheree; = /zie} and [10]
d(n) = ‘i‘j\r/]+l(7t) + &y, (n) (29)
[11]
with
- 1+ ®E () coth(anh;
<I>?:(n,) _ + &5 (n) coth(anhi) (30) [12]

coth(anhi) +®E, (n)

This recurrent algorithm is initialized with the following values: [13]

fif = coth |:an C},yh1:|
Af (n) = coth |:a:n e, hN:| (31)
BT (n) = coth(a,hi)
dF (n) = coth(anhy). (32)

Note that the limit values for large. of é(n) and &(n) are
€ = sm+1 + m and2, respectively.

Theb; (i = 1,2,3,4) in (18) and (20) are expressed in terms of
the electrical parameters of thdth and M + 1th layers

M _M41
by = e ey
1= EM 7 F EM41 T
- =
M M M M
b£ o £ — &y +5Algrc — &y
2TEM T Yy T M
cx cy cx cy
_M+41 _ _M+1 MA41_ _MA1
+ 2 Sz Cy +,_A/I+lc.r <z
SMAL T M1 %y TMH1 M1
Cx — Ly Cx — Z

M M1 M
by =< el hy =

SMAL
€y EM =+ €y EM+1- (33)
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