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On the Efficient Implementation of SDA for
Boxed Strip-like and Slot-like Structures

Gabriel Cano, Francisco Medina, and Manuel Horno

Abstract—This paper reports on an enhanced implementation of
the spectral-domain analysis (SDA) of boxed multistrip or multislot
transmission lines embedded in a layered medium, including biaxial
materials. Very high numerical efficiency is attained by a suitable basis
and mixed SDA and spatial-domain technique to calculate the entries
of the Galerkin matrix. Convergence properties of SDA are drastically
improved, making it competitive with other analytical techniques [such
as regular singular integral equation (RSIE)]. The method allows quick
and accurate computation of current/field distributions.

Index Terms—Analytical methods, planar lines, spectral-domain anal-
ysis.

I. INTRODUCTION

Spectral-domain analysis (SDA) is considered the standard tech-
nique to perform the analysis of planar lines [1], but it is still computa-
tionally intensive for computer-aided design (CAD) purposes. Some
authors advocate for the use of moreanalytical methods, such as
regular singluar integral equation ([R]SIE) [2], [3]. They claim that
(R)SIE is superior to SDA because of a better series convergence
and smaller order of characteristic matrices. However, SDA matrices
are very small if the proper edge behavior is incorporated into the
basis functions. In such a case, these functions have a wide spectrum
responsible for poor convergence of spectral series (boxed structures)
or integrals (open structures), especially when high spatial resolution
(high-order modes, small strips or slots, etc.) is required [4]–[6].
Several methods have been applied to particular structures [7]–[10]
so as to improve the convergence. On the other hand, as stated in
[3], some conclusions about the efficiency of (R)SIE reported in
previous papers were rather optimistic when applied to the analysis
of high-order modes or to the accurate description of fields and/or
currents. In this paper, we propose an enhanced implementation of
SDA overcoming some of its numerical drawbacks. It is suitable
for generalized planar structures (strip- and slot-like) embedded in
layered iso/anisotropic dielectrics. The key point of the technique is
to split the dependence of the spectral series into factors depending on
the unknown propagation constant
 and the frequency! and factors
involving the spectral variable sums. Quasi-analytical expressions
are provided for these sums. The final result is a very fast code,
which makes SDA at least as efficient and accurate as (R)SIE, while
retaining its high simplicity.

II. STATEMENT OF THE PROBLEM

The structures under study are boxed planar strip- or slot-like
configurations [11, Fig. 1]. Our aim is to compute, as efficiently as
possible, the
’s of the supported modes.
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A. Spectral-Domain Formulation

We start from the linear relationships between fields and currents
at the metallized interface (theM th one in [11, Fig. 1]):
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whereJ� (E�) are the�-components of the surface current density
(electric field) at theM th interface. The upper symbol~ stands for
the Fourier transform.~G�;� and ~L�;� are computed in closed form
by using the method in [11]. They are functions ofn, !, 
, and the
geometrical parameters of the layered configuration.

Equations (2) and (4) have the form~YYY (n) = [ ~FFF (n;!; 
)] ~XXX(n);
where ~XXX is a source vector and ~YYY (n) is its correspondingfield
vector. When this relationship is written in the space domain and
the boundary conditions imposed by the strips or slots are enforced,
we get an integral equation for thesource vector. Its spectral-
domain kernel is given by[ ~FFF (n;!; 
)]. All the components of the
unknownsourcevector in (2) and (4) have the same mathematical
behavior. Therefore, we can use a unique set of basis functions to
approximate any of the unknown quantities. This provides an elegant
unified treatment for strip- and slot-like geometries, and facilitates
the analytical preprocessing to be described later. In addition, all the
entries of [ ~FFF (n; !; 
)] have similar asymptotic behavior for large
values of�n.

B. Galerkin Method

The Galerkin method is used to solve our integral equations. Thus,
the sourcevector is expanded into a set of basis functions in such
a way that the expansion coefficientsxi = xxx are the solutions of
a homogeneous system of linear equations[AAA(!; 
)]xxx = 0. The
solvability condition gives the implicit dispersion equation

det[AAA(!; 
)] = 0: (5)

For each particular value of!, there exist nontrivial solutions for an
infinite, but discrete, set of values of
, f
ng. Solving (5) requires
multiple evaluations ofAAA(!; 
). Therefore, the adequate choice of
the basis functions and the method employed to generateAAA will be
crucial to speed up the solution.

III. N UMERICAL PROBLEMS AND THEIR SOLUTIONS

Providing a quick method to generateAAA (this is our goal) is the
key to get high computational speed. A generic element ofAAA(!; 
)
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has the form of a numerical series involving the Fourier transform of
the basis functions~ i;p� (n) and the spectral elements of the Green’s
dyad ~F�;�(n; !; 
)

A�;�
(i;p)(j;q) =

1

n

~ i;p� (n) ~F�;�(n; !; 
)[ ~ 
j;q
� (n)]� (6)

where i (j) stands for thei (j)th strip or slot,p (q) for the order
of the basis function, and� (�) for the x- or z-components. A
well-establishednatural set of basis functions is [9]

 i;p� (x) =
2
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2
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wherewi is the strip (slot) width andxci the position of its center.
Since ~F�;�(n� 1) � K�;�=n (K�;� being a constant), the general
term of (6) diminishes asn�2 (very slow rate of convergence) for
the basis functions in (7). Although good results can be obtained for

 for the first few modes using a reasonable number of Fourier terms
(N), this number becomes too large whenever fine spatial resolution
is needed. This is a serious drawback for this simple and elegant
method. It is then advisable to usead hoc accelerating techniques
(e.g., [7]–[10]). In this paper, we propose a unified and systematic
treatment to accelerate computations for very general planar lines and
investigate the consequences of its use. The technique is based on the
extraction from the original series of auxiliary series in such a way
that the difference series converge very fast as follows:

A�;�
(i;p)(j;q) =

1

n

~ i;p� (n)[ ~F�;� � ~F ap
�;� ][ ~ 

j;q
� (n)]� + S�;�(i;p)(j;q) (8)

with ~F ap
�;� being an approximate version of~F�;� . The following

requisites are demanded from[ ~FFF ap(n)].

1) The convergence of the residual series in (8) must be extremely
good. Therefore,~F ap

�;� should match~F�;� even for low values
of n (asymptotic matching must also be enforced).

2) ~F ap
�;� has to be known in closed form (even for complicated

layered structures including biaxial dielectrics).
3) The computation ofS�;�(i;p)(j;q) must be carried out in closed or

quasi-closed form.
4) The effort devoted to the evaluation ofS�;�(i;p)(j;q) should be

done just once (this is probably the most important condition).

The conditions above are fulfilled by writing the elements of~FFF ap

as the sum of products of functions depending, separately, onn and
(!; 
) as follows:

~F ap
�;�(n;!; 
) = f (1)�;�(!; 
)~h
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)~h

(2)
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in such a way that~F�;�(n > n0; !; 
) � ~F ap
�;�(n; !; 
). The integer

valuen0 gives the upper summation limit for the residual series in
(8), which have to be repeatedly computed. Therefore,n0 should be
as small as possible (requirement #1). Note that the series involving
~h
(1;2)
�;� have to be computed just once for any value of
 or ! (#4).

The functional form of~h(1;2)�;� will be obtained in Section IV for an
arbitrary layered structure (#2). Finally, a very efficient technique
to add up the series associated to the approximate Green’s dyads is
available (Section V and Appendix A) (#3).

IV. THE APPROXIMATED SPECTRAL DYADS

In this section, we obtain[ ~FFF ap]: Our starting point is the method
for the computation of the spectral Green’s dyad (SGD) reported in
[11]. The elements of the SGD are given there in terms of certain 2�
2 spectral matrices[~ggg(n)]i;j , which are known in closed form. These

matrices are written in terms of hyperbolic functions of a certain
transverse propagation matrix. In turn, there are three important
transverse wavenumbers in that formulation: the eigenvalues of the
transverse propagation matrix(�ci and ��i) and �yi [11] (these
wavenumbers are identical for isotropic materials, but they differ
for anisotropic dielectrics). Let�i(n) be any of the transverse
wavenumbers associated to theith layer. This generic wavenumber
can be expanded as

�i(n) = a1�n + a�1�
�1
n + a�3�

�3
n + � � � : (10)

In order to build up[ ~FFF ap(n)], we truncate (10) as follows:

�i(n) � �api (n) = Ki�n +
K 2
i (!; 
)

2Ki

k20
�n

(11)

whereKi andK0

i(!; 
) are defined in Appendix B. Some previous
asymptotic extraction methods would retain only the first term at
the right-hand side in (11). It is easily proven that the integern0,
above whichj�i(n)� �api (n)j<�; 8n>n0 (� is arbitrarily small),
increases with! as!4=3 for our approximation and as!2 for the
conventional one. Therefore, the advantages of our approach will be
more evident when! increases. Nevertheless, we only retain the first
term in (11) when�i(n) appears as the argument of a hyperbolic
function, i.e.,

coth[�i(n)hi] � coth(Ki�nhi) (12)

cosech[�i(n)hi] � cosech(Ki�nhi): (13)

This must be done so as to separate the dependence on(
; !), such
as in (9). Fortunately, the relative error of this approximation of the
hyperbolic function is much smaller than the error of the argument
itself. The standard large argument approximation for (12) and (13)
is 1 and 0, respectively. This is not a completely convenient choice
because the thickness of the dielectric layers is often very small in
comparison with the width of the enclosure. Our proposal (12), (13)
is advantageous in any case, but especially when the slab-thickness-
to-enclosure-width ratio is small.

By applying (11)–(13) in the definitions of[~ggg(n)]i;j in [11], and
following the algorithm reported in that paper to compute[~LLL(n)] [a
matrix whose elements are~L�;�(n)], we get an approximate version
[~LLLap(n)] of that dyad as follows:

~LLLap(n) = ~LLLapA (n) +
1

2�2
n

~LLLapB (n) : (14)

For strip-like structures, we need an approximation for[ ~GGG(n)] [a
matrix whose entries are~G�;�(n)] with the same features as in (14).
This is generated as

[ ~GGGap(n)] = [~LLLapA (n)]�1 �
1

2�2
n

[~LLLapA (n)]�1[~LLL
ap
B (n)][~LLLapA (n)]�1

(15)

where the large argument approximation for[~LLLapA (n)] has been
used. Now using (1)–(4), we can write a unified expression for the
approximate version of[ ~FFF (n)], [ ~FFF ap(n)] as follows:

[ ~FFF ap(n;!; 
)] =
1

�n
[ ~FFF ap

A (n;!; 
)] +
k20
2�2

n

[FFF ap
B (!; 
)] (16)

wherek0 is the vacuum wavenumber.
The explicit expressions for the elements of the matrices[ ~FFF ap

A ]
and [ ~FFF ap

B ] are as follows.
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A. Case 1: Slot-Like Geometries
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B. Case 2: Strip-Like Geometries
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where� = ~�(n!1). The algorithm to compute~�(n) and ~�(n), as
well as the values of� andbi (i = 1; 2; 3; 4), are given in Appendix
B.

Expression (16), in conjunction with (17)–(20), has the form
required in (9). Note that the dependence on�n of [ ~FFF ap

A ] and
[ ~FFF ap

B ] is quite different: we can consider those terms as first- and
second-order approximations to the exact SGD. The details of the
stratified dielectric are explicitly incorporated in the first-order term
in (16) through ~�(n) and ~�(n). The second-order term in (16)
presents a simpler dependence onn and incorporates information
about the layers adjacent to the metallized surface. This term becomes
important when the ratioa=�0 is not small (high frequency). The
approximation could be improved while keeping the essential features
of our approach by using a more sophisticated expression for[ ~FFF ap

B ].
However, this would partially destroy the simplicity of our approach
by introducing cumbersome computations, whereas benefits would be
significant only for very special structures.

V. THE ASYMPTOTIC TAILS

Once ~F ap
�;� is available, direct summation of the numerical series at

the right-hand side in (8) is feasible because of their fast convergence.
However, the series definingS�;�

(i;p)(j;q) in (8) converge very slowly
and their convergence properties are very sensitive to physical
dimensions. Even though they have to be computed just once, the
computational effort might be prohibitive. It is then necessary to
develop a fast method to computeS�;�

(i;p)(j;q). Taking into account the

asymptotic limit values of~�(n) and ~�(n) (see Appendix B), there
are two type of numerical series relevant to this task:

St =

1

n=1

1

nt
Jp(ndi)Jq(ndj)

cos(nci)
sin(nci)

cos(ncj)
sin(ncj)

(21)

Fig. 1. Dependence on the Fourier variable(n) of j ~Gzz(n)j (dotted line)
and� ~Gzz = ~Gzz(n) � ~Gap

zz (dashed line: first-order approximation, solid
line: second-order approximation) for two different frequency values (4 and
40 GHz) for a single isotropic substrate in a box("r = 11:7). Dimensions:
h = 3:17 mm, w = 3:04 mm, a = 34:74 mm, d = 50 mm.

with t = 1 and t = 3. The parametersdi;j and ci;j depend on
the strip (slot) widths and their relative locations inside the box.
The Bessel functionsJp;q multiplied by trigonometric functions in
(21) come from the Fourier transforms of (7). The caset = 1
corresponds to the quasi-static limit of the problem, and quasi-
analytical expressions have been already provided for this case [12],
[13]. The series corresponding tot = 3 are related to the full-wave
nature of the problem, and they become more and more significant
when! increases. Although we cannot trace for these series a parallel
with a quasi-static problem, we can adapt the mathematical procedure
underlying one of the methods reported in [12] and [13] to add up
such series very efficiently (see Appendix A).

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, we will check the numerical performance of the
techniques described in the previous sections. In particular, we are
going to study the following three aspects.

A. Performance of the First- and Second-Order Approximations

Exact SGD should be compared against its approximations (16). As
an example, let us consider the curves in Fig. 1, which correspond to a
simple boxed microstrip. The magnitude of the chosen element of the
Green’s dyad—all the elements behave in a similar way—decreases
asn�1 for largen (independently of!), while the difference between
such an element and their first- and second-order approximations
vanishes asn�3 andn�5. Therefore, the original series decaying as
n�2 (poor convergence) are substituted by series decaying asn�4 or
n�6 (excellent convergence). This behavior is the same for complex
layered structures and for both strip- and slot-like problems. It is clear
that extracting out the first-order approximation is almost mandatory
to keep the numerical effort within reasonable margins. The second-
order approximation represents an additional improvement of a factor
ranging from 5 to 10 (depending on geometry and frequency).
Applying asymptotic extraction schemes is particularly important if
we are interested in very high-order modes or narrow strips/slots. It
is also very important to realize that the singularity of the functions
in (7) is eliminated if the series are prematurely truncated (thus,
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TABLE I
CONVERGENCE WITH THENUMBER OF FOURIER TERMS OF THENORMALIZED PROPAGATION CONSTANTS OF THEFUNDAMENTAL �-MODE

AND A COMPLEX MODE OF SUSPENDEDBOXED COUPLED MICROSTRIPS(SEE [5] AND [6]). a = 2:54 m, h1 = h2 = 0:254 mm,
h3 = 0:762 mm, s2 = 0:0127 mm, S1 : W1 : S2 : W2 : S3 = 89:5: 20 : 1 : 40 : 49:5,

"r1 = "r3 = 1, "r2 = 2:2, f = 150 GHz

Fig. 2. Relative error of the effective dielectric constant of a boxed mi-
crostrip as a function of the number of Fourier terms(N) retained in
series evaluations.�: brute-force summation, : first-order approximation,
�: second-order approximation. Physical parameters as in Fig. 1.

losing the nice mathematical features of that basis). The use of
asymptotic schemes ensures that the singularity is actually taken into
account since it is strongly related to the large argument limit of
the spectral series. We have also verified the usefulness of using the
approximations in (12) and (13) instead of their limit values of one
and zero: when the layer thickness is small, this approach introduces
an important improvement.

B. Convergence of the Propagation Constants

This section illustrates the impact of using our method in the
computation of
. Let us consider the microstrip of Fig. 1. The
curves in Fig. 2 show the error of the fundamental-mode effective
dielectric constant as a function ofN (eight figures are correct for
large N ): asymptotic extraction yields extreme accuracy with few
Fourier terms. Second-order approximation is superior to the first-
order one, and both are much better than direct summation. The

converged value("ef = 8:810 041 6) is consistent with the one
reported in [8, Table II] (three digits).

In [5] and [6], Tzuang and Kuo presented SDA data for tightly cou-
pled strips in a metallic box, which were computed using thousands of
spectral terms. A few terms are enough for our method to get superior
accuracy. Thus, Table I reports results for the real�-mode and the
complex mode analyzed in [5] and [6]. Our data systematically
and consistently converge to their final values (boldface characters;
eight figures are correct) whenN increases without oscillations (no
numerical instabilities). Convergence rates are dramatically different
for direct summation, first-, and second-order approximations. Our
results are very close—although not identical—to the ones in [5] and
[6]. These convergence patterns are also found in the analysis of
multiple conductors or slots embedded in complex stratified regions
since the method was designed to account for all those circumstances.
The impact of using the technique in this paper is now clear.

C. Convergence of the Current/Field Expansion

Obtaining accurate field/current distributions is more difficult than
computing good values for
. Our method is also suitable for
computing those quantities. Returning to the problem analyzed in
[5] and [6], we concentrate on the current distribution for the
fundamental�-mode. We have systematically increased the number
of basis functions for the surface current on the strips and studied the
expansion coefficients. No more than 50 Fourier terms are required
to get six or seven correct figures for those (see Table II). We
observed that adding a new basis function to the expansion only
yields slight variations of the coefficients affecting the other basis
functions. This is a consequence of the quasi-orthogonal nature of
the functions in (7) for the kernel of our problem. This feature
minimizes the number of functions necessary to get a given accuracy.
However, taking advantage of this property depends on the accuracy
of the evaluation of the Galerkin matrix entries: only the use of
asymptotic extraction techniques ensures its proper exploitation, as
previously stated. It has also been verified that for low-order modes,
the expansion coefficients become smaller and smaller when the order
of the affected basis function increases: on a graphical representation
of the current distribution, the impact of high-order basis functions is
not appreciable, so making the shape of the distribution smooth. In
contrast, a nonphysical oscillatory behavior of the computed current
density has been reported in [5]. This is attributed to the nature of
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TABLE II
EXPANSION COEFFICIENTS FORJz ON STRIP #1 OF THE STRUCTURE IN

TABLE I (�-MODE). WE HAVE USED 11 BASIS FUNCTIONS FOR

Jz AND TEN FOR Jx AT EACH STRIP AND

SECOND-ORDER APPROXIMATION

TABLE III
EXPANSION COEFFICIENTS FORJz ON STRIP #1 OF THE STRUCTURE

IN TABLE I (�-MODE). WE HAVE USED 11 BASIS FUNCTIONS FOR

Jz AND TEN FOR Jx AT EACH STRIP AND DIRECT SUMMATION

the functions in (7). However, since we do not detect oscillations, we
believe that numerical inaccuracy in the summation of the Fourier
series (even though thousands of Fourier terms were used) could be
the cause of the problem. Tables II and III provide numerical support
to this hypothesis. These tables contain the dependence onN of the
coefficients for thez-directed current expansion on the narrower strip
for the�-mode of the structure in Table I. Table II corresponds to the
use of our method and Table III to direct summation. Table II shows
excellent convergence. Table III shows the very poor convergence of
direct summation (2� 104 Fourier terms and direct summation yield
results, which are much poorer than the ones obtained withN = 0
and second-order approximation). It is important to emphasize that
while the result for
=k0 obtained withN = 100 or 1000 (see
Table I) is reasonably good, the current expansion (see Table III) is
completely erroneous. Therefore, a truncation of the Fourier series
yielding a reasonably good propagation constant may be totally
inappropriate for current (or field) distribution computations. The
application of our technique completely overcomes this problem. This
has been checked with many other examples reported in the literature.

VII. CONCLUSIONS

This paper presented a procedure to enhance the numerical be-
havior of the SDA of boxed planar structures. After identifying the
drawbacks of the straightforward implementation of SDA, a solution
has been proposed based on a technique to speed up spectral series
computation. This is based on the use of an appropriate approximation
to the Green’s dyad, which permits one to reuse cumbersome partial
computations. In addition, these partial computations have been
carried out in quasi-closed form by using results developed in

the context of the quasi-TEM analysis of this type of lines. The
formulation has been presented in an unified way for slot- and strip-
like configurations and it is useful for both propagation constant and
field/current computations. The method makes SDA competitive with
more analytical techniques.

APPENDIX A

A fast method to compute the numerical series in (21) is given
here. Thet = 1 case in (21) is not considered because it corresponds
to the quasi-static limit studied in [12] and [13]. Thet = 3 case
still requires further explanation. Expression (21) fort = 3 actually
corresponds to the following series:

S3 =

1

n=1

~ i;p
� (n)[ ~ j;q

� ]�
1

n3
(22)

where ~ i;p
� (n) are the Fourier transforms of (7). Parseval and

convolution theorems allow us to rewrite (22) as

S3 =
a

2
dx  i;p

� (x) dx0 G3(x; x
0) j;q

� (x0) (23)

where

G3(x; x
0) =

2

a

1

n=1

1

n3
sin(�nx)
cos(�nx)

sin(�nx
0)

cos(�nx
0)

(24)

where sine (cosine) is used for strip(slot)-like structures. Expres-
sion (24) can be written in terms of the functionCN3(z) =
�1n=1 cos(nz)=n3. Except for arguments close to 0 or2�, there
is no closed-form expression for this function, but for such a case
there exists an alternative strongly convergent series. In our codes,
the following formulas have been used:

A. Small Argument(z < 0:1)

CN3(z) = 1:202056903157 +
z2

2
ln z �

3z2

4

�

z4

288
�

z6

86; 400
� � � � (25)

(this expression can be obviously used whenz is close to2� just
changingz by 2� � z).

B. Other Case(0:1<z< 2� � 0:1)

CN3(z) = S1 �
8

�2
S2 �

1

2
�z �

z2

2
�

1 + �2

3
(26)

whereS1 andS2 are the following exponentially convergent series,

S1 =

1

n=1

1� tanh(n)

n3
cos(nz)

S2 =

1

n=1

cosh
n�

2
(� � z)

n3 sinh(n�2=2)
:

Due to the regular character ofG3(x; x
0) and the type of singu-

larities exhibited by (7) at the edges of the integration interval,
Gauss–Chebyshev quadratures are specially suitable to perform the
double integration in (23). A few quadrature points (no more than
the order of the highest order Chebyshev polynomial used in the
expansion) typically provide eight or even more exact figures.
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APPENDIX B

In this appendix, we present the detailed expressions for a number
of constants and functions, which are necessary to implement our
method. Thus, we provided in (11) an approximation for theith layer
transverse wavenumbers—�ci, ��i, �yi—relevant to the method
used in [11] to calculate the SGD of layered structures with biaxial
dielectrics. The parametersKi and K0

i in (11) are distinct for
each transverse wavenumber, being their exact expressions: 1) for
�yi: Ki = 1; K 0

i = (
2=k20) � "iy; 2) for �ci: Ki = "ixy;
K 0
i = (
2=k20)"

i
zy�"

i
x; and 3) for��i: Ki = 1; K 0

i = (
2=k20)�"
i
z ,

where"ixy = "ix="
i
y and "izy = "iz="

i
y:

Let us now write the detailed recurrent algorithm used to calculate
~�(n) and ~�(n) of (17) and (19). Assuming the printed interface is
theM th one of aN -layers structure, we have (for1<i<N )

~�(n) = "M+1
~A+

M+1(n) + "M ~A�M(n) (27)

with

~Ai
�(n) =

"i + "i�1 ~A
�

i�1(n) coth �n "ixyhi

"i coth �n "ixyhi + "i�1 ~A
�

i�1(n)

(28)

where "i = "ix"iy and

~�(n) = ~�+

M+1(n) + ~��M(n) (29)

with

~��i (n) =
1 + ~��i�1(n) coth(�nhi)

coth(�nhi) + ~��i�1(n)
: (30)

This recurrent algorithm is initialized with the following values:

~A�1 = coth �n "1xyh1

~A+

N (n) = coth �n "NxyhN (31)

~��1 (n) = coth(�nh1)

~�+

N (n) = coth(�nhN): (32)

Note that the limit values for largen of ~�(n) and ~�(n) are
� = "M+1 + "M and 2, respectively.

The bi (i = 1; 2; 3; 4) in (18) and (20) are expressed in terms of
the electrical parameters of theM th andM + 1th layers

b1 = "M
"Mz
"Mx

+ "M+1

"M+1
z

"M+1
x

b2 = "M
"Mz � "My
"Mx � "My

+ "My
"Mx � "Mz
"Mx � "My

+ "M+1

"M+1
z � "M+1

y

"M+1
x � "M+1

y

+ "M+1

y

"M+1
x � "M+1

z

"M+1
x � "M+1

y

b3 = "Mz + "M+1

z b4 = "My "M + "M+1

y "M+1: (33)
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